How do you use partial fractions to find the integral #int (sinx)/(cosx(cosx-1))dx#?
1 Answer
Feb 19, 2017
Explanation:
Let
#int sinx/(u(u - 1)) * (du)/(-sinx)#
#-int1/(u(u - 1))du#
Now use partial fractions.
#A/u + B/(u - 1) = 1/(u(u - 1))#
#A(u -1) + B(u) = 1#
#Au - A + Bu = 1#
#(A + B)u - A = 1#
Write a system of equations.
#{(A + B = 0), (-A = 1):}#
Solving, we get
#-int 1/(u - 1) - 1/u du#
#int1/udu - int 1/(u - 1)du#
#ln|u| - ln|u - 1| + C#
#ln|cosx| - ln|cosx - 1| + C#
#ln|(cosx)/(cosx - 1)| +C#
Hopefully this helps!