How do you use the definition of a derivative to find the derivative of #f(x)=-x^3-2x^2+3x+6#?

1 Answer
Nov 19, 2017

#(df)/(dx)=-3x^2-4x+3#

Explanation:

We have #f(x)=-x^3-2x^2+3x+6#

hence #f(x+h)=-(x+h)^3-2(x+h)^2+3(x+h)+6#

and therefore #f(x+h)-f(x)#

= #-(x+h)^3-2(x+h)^2+3(x+h)+6-(-x^3-2x^2+3x+6)#

= #-x^3-3hx^2-3h^2x-h^3-2x^2-4hx-2h^2+3x+3h+x^3+2x^2-3x-6#

= #-cancel(x^3)-3hx^2-3h^2x-h^3-cancel(2x^2)-4hx-2h^2+cancel(3x)+3h+cancel6 +cancel(x^3)+cancel(2x^2)-cancel(3x)-cancel6#

= #-3hx^2-3h^2x-h^3-4hx-2h^2+3h#

Hence #(df)/(dx)=lim_(h->0)(f(x+h)-f(x))/h#

= #lim_(h->0)(-3hx^2-3h^2x-h^3-4hx-2h^2+3h)/h#

= #lim_(h->0)(-3x^2-3hx-h^2-4x-2h+3)#

= #-3x^2-4x+3#