Using the alternative definition of derivative:
#f'(a) = lim_(xrarra) (f(x)-f(a))/(x-a)#
For #f(x) = x^n# with #n# a positive integer:
Note that:
#x^n-a^n = (x-a)(x^(n-1)+x^(n-2)a+x^(n-3)a^2 + * * * +xa^(n-2)+a^(n-1))#
So:
#f'(a) = lim_(xrarra) (f(x)-f(a))/(x-a)#
#color(white)"sssss"# # = lim_(xrarra) (x^n-a^n)/(x-a)#
#=lim_(xrarra) ((x-a)(x^(n-1)+x^(n-2)a+x^(n-3)a^2 + * * * +xa^(n-2)+a^(n-1)))/(x-a)#
#=lim_(xrarra) (x^(n-1)+x^(n-2)a+x^(n-3)a^2 + * * * +xa^(n-2)+a^(n-1))#
#=a^(n-1)+a^(n-2)a+a^(n-3)a^2 + * * * +aa^(n-2)+a^(n-1)#
There are #n# factor, each of which has limit #a^(n-1)#, so the limit is
#f'(a) = na^(n-1)#
Because this holds for arbitrary #a#, it holds for all #x# and
#f'(x) = nx^(n-1)#