How do you use the important points to sketch the graph of #f(x)=x^2+2x-1#?

1 Answer
Jan 18, 2018

Vertex: #(-1,-2)#

Y-intercept: #(0,-1)#

X-intercepts: #(-1+ sqrt2,0)# and #(-1-sqrt2,0)#

Approximate x-intercepts: #(0.414,0)# and #(-2.414)#.

Additional Points

Point 1: #(3,2)#

Point 2: #(1,2)#

Plot the points on the graph and sketch a parabola through the points. Do not connect the dots.

Refer to the explanation for the process.

Explanation:

NOTE: This is a very long explanation.

Graph:

#f(x)=x^2+2x-1# is a quadratic equation in standard form:

#f(x)=ax^2+bx+c#,

where:

#a=1#, #b=2#, and #c=-1#

In order to graph a parabola, you need the vertex, and often the x- and y-intercepts, and other points, depending on whether it crosses the x- or y-axes.

Vertex: the maximum or minimum point of the parabola. Since #a>0#, the vertex is the minimum point and the parabola opens upward.

The #x#-value of the vertex is the #x#-value of the axis of symmetry. With a quadratic equation in standard form, the axis of symmetry is:

#x=(-b)/(2a)#

Plug in the known values.

#x=(-2)/(2*1)#

Simplify.

#x=-2/2#

#x=-1#

To find the #y#-value of the vertex, substitute #y# for #f(x)#, and substitute #-1# for #x#.

#y=(-1)^2+2(-1)-1#

Simplify.

#y=1-2-1#

#y=-2#

The vertex is #(-1,-2)#.

Y-intercept: value of #y# when #x=0#

#y=0^2+2(0)-1#

#y=-1#

The y-intercept is #(0,-1)#.

X-intercepts: values of #x# when #y=0#.

Substitute #0# for #y# and solve for #x# using the quadratic formula.

#x=(-b+-sqrt(b^2-4*a*c))/(2*a)#

Plug in known values.

#x=(-2+-sqrt(2^2-4*1*-1))/(2*1)#

Simplify.

#x=(-2+-sqrt(8))/2#

Prime factorize #8#.

#x=(-2+-sqrt(2xx2xx2))/2#

Simplify.

#x=(-2+-2sqrt2)/2#

Reduce.

#x=(-color(red)cancel(color(black)(2))^1+-color(red)cancel(color(black)(2))^1sqrt2)/color(red)cancel(color(black)(2))^1#

#x=-1+-2sqrt2#

Solutions for #x#.

#x=-1+sqrt2,##-1-sqrt2#

The x-intercepts are #(-1+ sqrt2,0)# and #(-1-sqrt2,0)#.

Approximate x-intercepts are #(0.414,0)# and #(-2.414)#.

Additional Points.

Point 1

#x=3:# Substitute #-3# for #x# and solve for #y#.

#y=(-3)^2+2(-3)-1#

#y=9-6-1#

#y=2#

Point 1: #(3,2)#

Point 2

#x=1:# Substitute #1# for #x# and solve for #y#.

#y=(-1)^2+2(1)-1#

#y=1+2-1#

#y=2#

Point 2 : #(1,2)#

Summary:

Vertex: #(-1,-2)#

Y-intercept: #(0,-1)#

X-intercepts: #(-1+ sqrt2,0)# and #(-1-sqrt2,0)#

Approximate x-intercepts: #(0.414,0)# and #(-2.414)#.

Additional Points

Point 1: #(3,2)#

Point 2: #(1,2)#

Plot the points on the graph and sketch a parabola through the points. Do not connect the dots.

graph{y=x^2+2x-1 [-10, 10, -5, 5]}