Given a function #f(x)#, the derivative of #f(x)# is defined as:
#color(white)("XXX")(df(x))/dx=lim_(hrarr0) (f(x+h)-f(x))/h#
If #f(x)=2x^2-3x+6#
then #f(x+h)= 2(x+h)^2-3(x+h)+6#
#color(white)("XXXXXXXX")=2x^2+2xh+h^2-3x-3h+6#
So
#f(x+h)-f(x) = color(white)("XX")2x^2+2xh+h^2-3x-3h+6#
#color(white)("XXXXXXXXXXX")-(underline(2x^2color(white)("XXXXXXX")-3xcolor(white)("XXX")+6))#
#color(white)("XXXXXXXXX")=color(white)("XXXXXX")2xh+h^2color(white)("XXX")+3h#
and
#color(white)("XXX")(f(x+h)-f(x))/h = 2x+h+3#
Therefore
#color(white)("XXX")(df(x))/(dx)=lim_(hrarr0) 2x+h+3 = 2x+3#