The limit definition is the formula #f'(x) = lim_(h -> 0) (f(x + h) - f(x))/h#.
#f'(x) = lim_(h->0)(4/(x + h - 3) - 4/(x - 3))/h#
This involves lots of algebra--brace yourself!
#f'(x) = lim_(h->0)((4(x - 3))/((x + h -3)(x - 3)) - (4(x + h - 3))/((x - 3)(x + h - 3)))/h#
#f'(x) = lim_(h->0) ((4x - 12 - 4x - 4h + 12)/((x + h -3)(x- 3)))/h#
#f'(x) = lim_(h->0) ((-4h)/((x + h - 3)(x - 3)))/h#
#f'(x) = lim_(h->0)(-4h)/((x + h - 3)(x - 3)(h))#
#f'(x) = lim_(h->0)(-4)/((x + h - 3)(x - 3))#
We can now substitute #h =0# into the expression.
#f'(x) = -4/((x + 0 - 3)(x- 3))#
#f'(x) = -4/((x - 3)(x - 3))#
#f'(x) = -4/(x - 3)^2#
Hopefully this helps!