By definition of derivative we have:
#f'(x) = lim_(h->0) (f(x+h)-f(x))/h#
so:
#d/dx( sqrt(4x-5)) = lim_(h->0) (sqrt(4(x+h)-5)-sqrt(4x-5))/h#
rationalize the numerator using the identity:
#a^2-b^2 =(a-b)(a+b)#
#d/dx( sqrt(4x-5)) = lim_(h->0) ((sqrt(4(x+h)-5)-sqrt(4x-5))/h)( (sqrt(4(x+h)-5)+sqrt(4x-5))/(sqrt(4(x+h)-5)+sqrt(4x-5)))#
#d/dx( sqrt(4x-5)) = lim_(h->0) (4(x+h)-5-(4x-5))/(h (sqrt(4(x+h)-5)+sqrt(4x-5))#
#d/dx( sqrt(4x-5)) = lim_(h->0) (cancel(4x)+4h-cancel5-cancel(4x)+cancel5)/(h (sqrt(4(x+h)-5)+sqrt(4x-5))#
#d/dx( sqrt(4x-5)) = lim_(h->0) (4cancelh)/(cancelh (sqrt(4(x+h)-5)+sqrt(4x-5))#
#d/dx( sqrt(4x-5)) = lim_(h->0) 4/ (sqrt(4(x+h)-5)+sqrt(4x-5)#
#d/dx( sqrt(4x-5)) = 2/ sqrt(4x-5)#