By definition the derivative of #f(x)# is:
#lim_(Deltax->0) (f(x+Deltax)-f(x))/(Deltax) = lim_(Deltax->0) (Deltaf)/(Deltax)#
Calculate:
#Deltaf = (2-(x+Deltax))/(3(x+Deltax)+1) - (2-x)/(3x+1)#
#Deltaf =( (2-x-Deltax)(3x+1) -(3x+3Deltax+1) (2-x))/((3x+3Deltax+1)(3x+1))#
#Deltaf =( cancel((2-x)(3x+1))-Deltax(3x+1) -cancel((3x+1) (2-x))-3Deltax(2-x))/((3x+3Deltax+1)(3x+1))#
#Deltaf = ( -Deltax(3x+1+6-3x))/((3x+3Deltax+1)(3x+1)) = -(7Deltax)/((3x+Deltax+1)(3x+1)) #
Divide by #Deltax#:
#(Deltaf)/(Deltax) = -7/((3x+Deltax+1)(3x+1)) #
Passing to the limit:
#lim_(Deltax->0) (Deltaf)/(Deltax) = lim_(Deltax->0) -7/((3x+Deltax+1)(3x+1)) = - 7/((3x+1)^2)#