How do you use the limit process to find the area of the region between the graph #y=1-x^3# and the x-axis over the interval [-1,1]?
1 Answer
# I = int_-1^1 \ (1-x^3) \ dx =2 #
Explanation:
By definition of an integral, then
# int_a^b \ f(x) \ dx #
represents the area under the curve
That is
# int_a^b \ f(x) \ dx = lim_(n rarr oo) (b-a)/n sum_(i=1)^n \ f(a + i(b-a)/n)#
Here we have
And so:
# I = int_-1^1 \ (1-x^3) \ dx #
# \ \ = lim_(n rarr oo) 2/n sum_(i=1)^n \ f(-1+2*i/n)#
# \ \ = lim_(n rarr oo) 2/n sum_(i=1)^n \ (1-(-1+(2i)/n)^3) #
# \ \ = lim_(n rarr oo) 2/n sum_(i=1)^n \ (1-(-1 + 3((2i)/n) - 3((2i)/n)^2+((2i)/n)^3)) #
# \ \ = lim_(n rarr oo) 2/n sum_(i=1)^n \ (2 - (6i)/n + (12i^2)/n^2-(8i^3)/n^3) #
# \ \ = lim_(n rarr oo) 2/n {sum_(i=1)^n2 - 6/nsum_(i=1)^n i + 12/n^2sum_(i=1)^ni^2-8/n^3 sum_(i=1)^n i^3}#
Using the standard summation formula:
# sum_(r=1)^n r \ = 1/2n(n+1) #
# sum_(r=1)^n r^2 = 1/6n(n+1)(2n+1) #
# sum_(r=1)^n r^3 = 1/4n&2(n+1)^2 #
we have:
# I = lim_(n rarr oo) 2/n {2n - 6/n 1/2n(n+1) + 12/n^2 1/6n(n+1)(2n+1)-8/n^3 1/4n^2(n+1)^2}#
# \ \ = lim_(n rarr oo) 2/n {2n - 3(n+1) + 2/n(n+1)(2n+1)-2/n (n+1)^2}#
# \ \ = lim_(n rarr oo) 2/n {-n-3 + 2/n(n+1)(2n+1)-2/n (n+1)^2}#
# \ \ = lim_(n rarr oo) 2/n^2 {-n^2-3n + 2(n+1)(2n+1)-2(n+1)^2}#
# \ \ = lim_(n rarr oo) 2/n^2 {-n^2-3n + 2(2n^2+3n+1)-2(n^2+2n+1)}#
# \ \ = lim_(n rarr oo) 2/n^2 {-n^2-3n + 4n^2+6n+2-2n^2-4n-2}#
# \ \ = lim_(n rarr oo) 2/n^2 {n^2-n}#
# \ \ = lim_(n rarr oo) (2-2/n)#
# \ \ = 2#