How do you use the quadratic formula to solve #16t^2-4t+3=0#?
1 Answer
Sep 24, 2017
Explanation:
Given:
#16t^2-4t+3 = 0#
This is in standard form for a quadratic equation:
#at^2+bt+c = 0#
with
It has roots given by the quadratic formula:
#t = (-b+-sqrt(b^2-4ac))/(2a)#
#color(white)(t) = (-(color(blue)(-4))+-sqrt((color(blue)(-4))^2-4(color(blue)(16))(color(blue)(3))))/(2(color(blue)(16)))#
#color(white)(t) = (4+-sqrt(16-192))/32#
#color(white)(t) = (4+-sqrt(-176))/32#
#color(white)(t) = (4+-sqrt(176)i)/32#
#color(white)(t) = (4+-sqrt(16*11)i)/32#
#color(white)(t) = (4+-4sqrt(11)i)/32#
#color(white)(t) = 1/8+-1/8sqrt(11)i#