How do you use the quadratic formula to solve #7cos^2theta-1=5costheta# for #0<=theta<360#?

1 Answer
Sep 15, 2017

#28^@70; 99^@37; 260^@63; 313^@30#

Explanation:

#7cos^2t - 5cos t - 1 = 0#.
Solve this quadratic equation for cos t:
#D = = b^2 - 4ac = 25 + 28 = 53# --> #d = +- sqrt53#
There are 2 real roots:
#cos t = -b/(2a) +- d/(2a) = 5/14 +- sqrt53/14 = (5 +- sqrt53)/14#
a. #cos t = (5 + sqrt53)/14 = 0.877#
Calculator and trig unit circle give:
#t = +- 28^@70#
b. #cos t = (5 - sqrt53)/14 = - 0.163#
#t = +- 99^@37#
Co-terminal arc of #(-28^@70) --> 313^@30#
Co-terminal arc of# (- 99^@37) --> 260^@63#
Answers for (0, 360)
#28^@70; 99^@37; 260^@63; 313^@30#