How do you use the quadratic formula to solve #9x^2-6x+37=0#?

1 Answer
Dec 20, 2016

#x = 1/3+-2i#

Explanation:

#9x^2-6x+37 = 0#

is in the form:

#ax^2+bx+c = 0#

with #a=9#, #b=-6# and #c=37#

This has zeros given by the quadratic formula:

#x = (-b +-sqrt(b^2-4ac))/(2a)#

#color(white)(x) = (6+-sqrt((-6)^2-4(9)(37)))/(2(9))#

#color(white)(x) = (6+-sqrt(36-36(37)))/18#

#color(white)(x) = (6+-sqrt(36(1-37)))/18#

#color(white)(x) = (6+-sqrt(-36^2))/18#

#color(white)(x) = (6+-36i)/18#

#color(white)(x) = 1/3+-2i#