How do you use the quadratic formula to solve #9x^2-6x+37=0#?
1 Answer
Dec 20, 2016
Explanation:
#9x^2-6x+37 = 0#
is in the form:
#ax^2+bx+c = 0#
with
This has zeros given by the quadratic formula:
#x = (-b +-sqrt(b^2-4ac))/(2a)#
#color(white)(x) = (6+-sqrt((-6)^2-4(9)(37)))/(2(9))#
#color(white)(x) = (6+-sqrt(36-36(37)))/18#
#color(white)(x) = (6+-sqrt(36(1-37)))/18#
#color(white)(x) = (6+-sqrt(-36^2))/18#
#color(white)(x) = (6+-36i)/18#
#color(white)(x) = 1/3+-2i#