How do you verify #8sin²xcos²x = 1-cos(4x)#?

2 Answers
Mar 30, 2018

See below:

Explanation:

We know

#sin(2x) = 2 sin x cos x#

and

#cos(2x) = cos^2 x - sin^2 x = 1-2sin^2 x#

So

#8 sin^2 x cos^2 x = 2(4sin^2 x cos^2 x) = 2(2sin x cos x)^2#
#qquad = 2sin^2(2x) = 1-cos(2 times 2x) = 1-cos(4x)#

Mar 30, 2018

Please see below.

Explanation:

We have:

#8sin^2cos^2x = 1 - cos(2x + 2x)#

#8sin^2xcos^2x = 1- (cos(2x)cos(2x) - sin(2x)sin(2x))#

#8sin^2xcos^2x = 1 - (cos^2(2x) - sin^2(2x))#

#8sin^2xcos^2x= 1 - cos^2(2x) + sin^2(2x)#

#8sin^2xcos^2x = sin^2(2x)+ sin^2(2x)#

#8sin^2xcos^2x= 2sin^2(2x)#

Now recall that #sin(2x) = 2sinxcosx#, therefore #sin^2(2x) = 4sin^2xcos^2x#.

#8sin^2xcos^2x = 2(4sin^2xcos^2x)#

#8sin^2xcos^2x= 8sin^2xcos^2x#

#LHS = RHS#

As required.

Hopefully this helps!