How do you write # 3x^0 div y^-3# with positive exponents?

2 Answers
Mar 9, 2018

Answer:

See a solution process below:

Explanation:

First, rewrite the expression as:

#(3x^0)/y^-3#

Then use this rule for exponents to simplify the #x# term:

#a^color(red)(0) = 1#

#(3x^color(red)(0))/y^-3 => (3 xx 1)/y^-3 => 3/y^-3#

Then use this rule of exponents to eliminate the negative exponent:

#1/x^color(red)(a) = x^color(red)(-a)#

#3/y^color(red)(-3) => 3y^color(red)(- -3) => 3y^3#

Mar 9, 2018

Answer:

#3y^3#

Explanation:

#3x^0-:y^-3#

#:.=3xx1-:y^-3#

#:.=3xx1/(y^-3)#

#:.=3/y^-3#

#:.=3y^3#