How do you write a polynomial function in standard form with zeros at -6, 2, and 5?

1 Answer
Aug 2, 2018

Answer:

#x^3-x^2-32x+60#

Explanation:

If #alpha,beta# and #gamma# are the zeros,

the polynomial function is #(x-alpha)(x-beta)(x-gamma)#

Hence, for zeros #-6,2# and #5# polynomial function is

#(x-(-6))(x-2)(x-5)#

= #(x+6)(x^2-5x-2x+10)#

= #(x+6)(x^2-7x+10)#

= #x^3-7x^2+10x+6x^2-42x+60#

= #x^3-x^2-32x+60#