How do you write a polynomial function of least degree given the zeros -5, #sqrt3#?

1 Answer
Oct 5, 2016

Answer:

#f(x) = x^(2) - (sqrt(3) - 5) x - 5 sqrt(3)#

Explanation:

Let's express the function as #f(x) = (x + 5) (x - sqrt(3))#:

#=> f(x) = (x + 5) (x - sqrt(3))#

#=> f(x) = (x) (x) + (x) (- sqrt(3)) + (5) (x) + (5) (- sqrt(3))#

#=> f(x) = x^(2) - sqrt(3) x + 5 x - 5 sqrt(3)#

#=> f(x) = x^(2) - (sqrt(3) - 5) x - 5 sqrt(3)#