How do you write a polynomial in standard form given the zeros x=-4, 5. -1?

1 Answer
May 26, 2016

#x^3-21x-20=0#

Explanation:

If #{alpha,beta,gamma,delta,..}# are the zeros of a function, then the function is

#(x-alpha)(x-beta)(x-gamma)(x-delta)...=0#

Here zeros are #-4#, #5#) and #-1#, hence function is

#(x-(-4))(x-5)(x-(-1))=0# or

#(x+4)(x-5)(x+1)=0# or

#(x^2+4x-5x-20)(x+1)=0# or

#(x^2-x-20)(x+1)=0# or

#x^3-x^2-20x+x^2-x-20=0# or

#x^3-21x-20=0#