How to find the answer for #4sqrtx(2sqrtx+3sqrt7)# and simplify it too?

1 Answer
Sep 26, 2017

Answer:

#8x+12sqrt7sqrtx#

Explanation:

First, we distribute parentheses/brackets using: #x(y+z)=xy+xz#

Therefore,
#4sqrtx(2sqrtx+3sqrt7)# is the same as #4sqrtx*2sqrtx+4sqrtx*3sqrt7#

#4sqrtx*2sqrtx=8x# because #sqrtx*sqrtx=x#
So, you can just multiply the numbers: #4*2=8# and add the #x#.

For #4sqrtx*3sqrt7,# you take #4*3=12# and you combine #sqrtx# and #sqrt7# together.
So, the equation on the right side would be #12sqrt7sqrtx#.

Add both parts together:
#8x+12sqrt7sqrtx#