How to find the general solution of #x dy/dx = xy + y# ?

1 Answer
May 23, 2018

#y = Axe^x#, where #A# is a constant.

Explanation:

We do a little bit of algebra before integrating to separate the variables:

#x(dy/dx) = y(x +1)#

#dy/(y dx) = (x +1)/x#

#(dy)/y = (x + 1)/x dx#

#lny = int 1 + 1/xdx#

#lny = x + lnx + C#

#y = Ae^(x + lnx)#

#y = Ae^xe^(lnx)#

#y = Axe^x#

Hopefully this helps!