We need to create two vectors in the plane.
To create #vec(PQ)#, we subtract each coordinate of point P from its respective coordinate of point Q:
#vec(PQ) = < 6-3, -1 - (-4), 7 - 4>#
#vec(PQ) = < 3, 3, 3>#
To create #vec(QR)#, we subtract each coordinate of point P from its respective coordinate of point R:
#vec(PR) = < 6-3, -1 - (-4), 9-4 >#
#vec(PR) = < 3, 3, 5 >#
A normal vector to the plane, #vecn#, is the cross product of these two vectors:
#vecn = vec(PQ) xx vec(PR)#
#vecn = < 3, 3, 3 > xx < 3, 3, 5>#
#vecn = <6, -6, 0>#
To make #vecn# a unit vector, we divide by the magnitude:
#|vecn| = sqrt(6^2+ (-6)^2+0^2)#
#|vecn| = 6sqrt2#
#hatn = 1/(6sqrt2)<6, -6, 0>#
#hatn = sqrt2/(12)<6, -6, 0>#
#hatn = < sqrt2/2, -sqrt2/2, 0 >#