If #A= <5 , 6 ># and #B= <-1,4 >#, what is #||A+B|| -||A|| -||B||#?
1 Answer
May 5, 2017
# ||vec(A+B) || - || vecA ||-|| vecB || = sqrt(116)-sqrt(61) -sqrt(17) #
# " " = 1.1630 (4dp) #
Explanation:
We have:
# vecA = <<5,6>>#
#vec B =<<-1,4>>#
So:
# vec(A+B) = <<4,10>>#
So the norms are:
# || vecA || = sqrt(5^2+6^2) #
# " " = sqrt(25+36) #
# " " = sqrt(61) #
# || vecB || = sqrt((-1)^2+4^2) #
# " " = sqrt(1+16) #
# " " = sqrt(17) #
And;
# ||vec(A+B) ||= sqrt(4^2+10^2) #
# " " = sqrt(16+100) #
# " " = sqrt(116) #
Hence:
# ||vec(A+B) || - || vecA ||-|| vecB || = sqrt(116)-sqrt(61) -sqrt(17) #
# " " = 1.1630 (4dp) #