If an object is moving at #2 m/s# over a surface with a kinetic friction coefficient of #u_k=17 /g#, how far will the object continue to move?

1 Answer

#x=2/17=0.11764" "#meter

Explanation:

Let #x# be the distance

From #v_f^2=v_0^2+2ax#

#-F_k=m*a" "#Kinetic Frictional force
#a=(-F_k)/m" "# acceleration

#F_k=mu_k*F_n" "# Relation between Kinetic frictional force and the normal force

#F_n=m*g#

#x=(v_f^2-v_0^2)/(2a)#

#x=(v_f^2-v_0^2)/(2((-F_k)/m))#

#x=(v_f^2-v_0^2)/(2((-(mu_k*F_n))/m))#

#x=(v_f^2-v_0^2)/(2((-(mu_k*m*g))/m))#

#x=(v_f^2-v_0^2)/(2(-mu_k*g))#

#v_f=0" "#when it stops
#v_0=2" "#meter /second
#mu_k=17/g#

#x=(v_f^2-v_0^2)/(2(-mu_k*g))#
#x=(0^2-2^2)/(2(-(17/g)*g))#

#x=(-4)/(-34)=2/17" "#meters

God bless....I hope the explanation is useful.