If sin of theta equals 3/8 and theta is in quadrant II. what are cos, tan, csc, cot, and sec of theta?

2 Answers
Apr 14, 2016

See explanation below.

Explanation:

sintheta = 3/8sinθ=38, thetaθ in quadrant IIII

Imagine a right triangle being drawn on the cartesian plane, as in the following example.

enter image source here

Since sin = opposite/hypotenuse, the side opposite to thetaθ is 3 and the hypotenuse is 88, we can rearrange our pythagorean theorem to find the adjacent side, b.

a^2 + b^2 = c^2a2+b2=c2

b^2 = c^2 - a^2b2=c2a2

b^2 = 8^2 - 3^2b2=8232

b^2 = 64 - 9b2=649

b^2 = 55b2=55

b = -sqrt(55)b=55

So, now we know that the adjacent side measures -sqrt(55)55 units (since the x axis is negative in quadrant II) in length. Thus we can deduce that costheta = -sqrt(55)/8cosθ=558 and tantheta = -3/(sqrt(55))tanθ=355

Now, for csctheta, sectheta and cotthetacscθ,secθandcotθ, we must apply the reciprocal identities.

csctheta = 1/sinthetacscθ=1sinθ

sectheta = 1/costhetasecθ=1cosθ

cottheta = 1/tanthetacotθ=1tanθ

Therefore, csctheta = 8/3, sectheta = -8/sqrt(55) and cottheta = -sqrt(55)/3cscθ=83,secθ=855andcotθ=553

To summarize, the six trigonometric ratios, we get:

sintheta = 3/8sinθ=38

costheta = -sqrt(55)/8cosθ=558

tantheta = -3/sqrt(55)tanθ=355

csctheta = 8/3cscθ=83

sectheta = -8/sqrt(55)secθ=855

cottheta = -sqrt(55)/3cotθ=553

Hopefully this helps!

May 24, 2017

"see explanation"see explanation

Explanation:

sintheta=3/8to(color(red)(1))sinθ=38(1)

• csctheta=1/sintheta=8/3to(color(red)(2))cscθ=1sinθ=83(2)

• costheta=+-sqrt(1-sin^2theta)cosθ=±1sin2θ

color(white)(xxxxx)=-sqrt(1-9/64)larr" negative value"××x=1964 negative value

color(white)(xxxxx)=-sqrt(55/64)××x=5564

rArrcostheta=-sqrt55/8to(color(red)(3))cosθ=558(3)

• sectheta=1/costheta=-8/sqrt55to(color(red)(4))secθ=1cosθ=855(4)

• tantheta=(sintheta)/(costheta)tanθ=sinθcosθ

color(white)(xxxx)=3/8xx-8/sqrt55=-3/sqrt55to(color(red)(5))××=38×855=355(5)

• cottheta=1/tantheta=-sqrt55/3to(color(red)(6))cotθ=1tanθ=553(6)