If sin of theta equals 3/8 and theta is in quadrant II. what are cos, tan, csc, cot, and sec of theta?
2 Answers
See explanation below.
Explanation:
Imagine a right triangle being drawn on the cartesian plane, as in the following example.
Since sin = opposite/hypotenuse, the side opposite to
So, now we know that the adjacent side measures
Now, for
Therefore,
To summarize, the six trigonometric ratios, we get:
Hopefully this helps!
Explanation:
sintheta=3/8to(color(red)(1))sinθ=38→(1)
• csctheta=1/sintheta=8/3to(color(red)(2))∙cscθ=1sinθ=83→(2)
• costheta=+-sqrt(1-sin^2theta)∙cosθ=±√1−sin2θ
color(white)(xxxxx)=-sqrt(1-9/64)larr" negative value"××x=−√1−964← negative value
color(white)(xxxxx)=-sqrt(55/64)××x=−√5564
rArrcostheta=-sqrt55/8to(color(red)(3))⇒cosθ=−√558→(3)
• sectheta=1/costheta=-8/sqrt55to(color(red)(4))∙secθ=1cosθ=−8√55→(4)
• tantheta=(sintheta)/(costheta)∙tanθ=sinθcosθ
color(white)(xxxx)=3/8xx-8/sqrt55=-3/sqrt55to(color(red)(5))××=38×−8√55=−3√55→(5)
• cottheta=1/tantheta=-sqrt55/3to(color(red)(6))∙cotθ=1tanθ=−√553→(6)