If sin(x) = 0.4 , what is sin((3π/2)+x)=? , Show exact values. How would I get along solving this without a calculator.

1 Answer
May 26, 2017

#- 0.916#

Explanation:

Use trig identity:
#sin (a + b) = sin a*cos b + sin a*sin b#

In this case:

#sin ((3pi/2) + x) = sin ((3pi)/2)*cos x + cos ((3pi)/2)*sin x#

Since #sin ((3pi)/2) = - 1# and #cos ((3pi)/2) = 0#, therefore:
#sin ((3pi)/2 + x) = - cos x#.

Find #cos x#, knowing #sin x = 0.4.#

#cos^2 x = 1 - sin^2 x = 1 - 0.16 = 0.84#

Recall that #0 < sinx < 1/2pi therefore cosx > 0#

#cos x = sqrt(0.84) = 0.916#

#sin ((3pi)/2 + x) = +- 0.916#