If #tan A = (A + sqrt(1-A))/(A + sqrt(1+A))#, find the value of #sin 4A#?

1 Answer
Mar 25, 2018

Please see below.

Explanation:

#sin2A=2sinAcosA=(2sinAcosA)/(sin^2A+cos^2A)#

= #((2sinAcosA)/cos^2A)/(sin^2A/cos^2A+1)=(2tanA)/(1+tan^2A)#

Similarly #cos2A=(cos^2A-sin^2A)/(cos^2A+sin^2A)#

= #(1-tan^2A)/(1+tan^2A)#

and hence #sin4A=2sin2Acos2A=(4tanA(1-tan^2A))/(1+tan^2A)^2#

I am treating as #tanA=(a+sqrt(1-a))/(a+sqrt(1+a))#, to distinguish it from angle #A#.

then #tan^2A=(a+sqrt(1-a))^2/(a+sqrt(1+a))^2#

or #(a+1-a+2asqrt(1-a))/(a+1+a+2asqrt(1+a))#

i.e. #tan^2A=(1+2asqrt(1-a))/(1+2a+2asqrt(1+a))#

and #1+tan^2A=(2+2a+2a(sqrt(1-a)+sqrt(1+a)))/(1+2a+2asqrt(1+a))#

and using componendo dividendo

#(1-tan^2A)/(1+tan^2A)=((1+2a+2asqrt(1+a))-(1+2asqrt(1-a)))/((1+2a+2asqrt(1+a))+(1+2asqrt(1-a)))#

= #(2a+2a(sqrt(1+a)-sqrt(1-a)))/(2+2a+2a(sqrt(1+a)+sqrt(1-a)))#

and #(2tanA)/(1+tan^2A)=2(a+sqrt(1-a))/(a+sqrt(1+a))xx (1+2a+2asqrt(1+a))/(2+2a+2a(sqrt(1-a)+sqrt(1+a)))#

Hence #sin4A=2(a+sqrt(1-a))/(a+sqrt(1+a))xx (1+2a+2asqrt(1+a))/(2+2a+2a(sqrt(1-a)+sqrt(1+a)))xx(2a+2a(sqrt(1+a)-sqrt(1-a)))/(2+2a+2a(sqrt(1+a)+sqrt(1-a)))#