#intsqrt(x^2 + 5)/xdx#?

Would prefer use of trig substitution if that helps. Thanks in advance

2 Answers
Mar 19, 2018

#int sqrt(x^2+5)/x dx = sqrt(x^2+5) +sqrt5/2 ln abs((sqrt(x^2+5)-sqrt5)/ (sqrt(x^2+5)+sqrt5))+ C#

Explanation:

Substitute:

#u = sqrt(x^2+5)#

#du = (xdx)/sqrt(x^2+5)#

so:

#int sqrt(x^2+5)/x dx = int (x^2+5)/x^2 x/sqrt(x^2+5)dx = int (u^2du)/(u^2-5)#

Reduce the degree of the numerator by splitting:

#int (u^2du)/(u^2-5) = int (u^2-5+5du)/(u^2-5) = int (1+5/(u^2-5))du #

using the linearity of the integral:

#int (u^2du)/(u^2-5) =int du +5int 1/(u^2-5)du #

#int (u^2du)/(u^2-5) =u +5int 1/(u^2-5)du #

Solve the resulting integral by partial fraction decomposition:

#1/(u^2-5) = 1/((u-sqrt5)(u+sqrt5)#

#1/(u^2-5) = A/(u-sqrt5)+B/(u+sqrt5)#

#1= A(u+sqrt5)+B(u-sqrt5)#

#1= (A+B) u + (A-B)sqrt5#

#{(A+B=0),(A-B = 1/sqrt5):}#

#{(A=1/(2sqrt5)),(B = -1/(2sqrt5)):}#

so:

#int 1/(u^2-5)du = int (du)/(2sqrt5(u-sqrt5))-int(du)/(2sqrt5(u+sqrt5))#

#int 1/(u^2-5)du = 1/(2sqrt5) ln abs(u-sqrt5)-1/(2sqrt5)ln abs (u+sqrt5)+ C#

and using the properties of logarithms:

#int 1/(u^2-5)du = 1/(2sqrt5) ln abs((u-sqrt5)/ (u+sqrt5))+ C#

Put together the partial results:

#int sqrt(x^2+5)/x dx = u +sqrt5/2 ln abs((u-sqrt5)/ (u+sqrt5))+ C#

and undo the substitution:

#int sqrt(x^2+5)/x dx = sqrt(x^2+5) +sqrt5/2 ln abs((sqrt(x^2+5)-sqrt5)/ (sqrt(x^2+5)+sqrt5))+ C#

Mar 19, 2018

Using trig substitution,as requested.
#I=sqrt(x^2+5)+sqrt5/2ln|(sqrt(x^2+5)-sqrt5)/(sqrt(x^2+5)-sqrt5)|+c#

Explanation:

#I=int(sqrt(x^2+5))/xdx#
Let, #x=sqrt5tanu=>dx=sqrt5sec^2udu#
#And,sqrt(x^2+5)=sqrt(5tan^2u+5)=sqrt5sqrt(tan^2u+1)#
#sqrt(x^2+5)=sqrt5sqrt(sec^2u)=sqrt5secu##=>secu=sqrt(x^2+5)/sqrt5orcolor(red)(cosu=sqrt5/sqrt(x^2+5),....to(1)#
#I=int(cancelsqrt5secu)/(cancelsqrt5tanu)(sqrt5sec^2u)du#
#=sqrt5int(secu(tan^2u+1))/(tanu)du##=sqrt5int((secutan^2u)/(tanu)+(secu)/(tanu))du#
#=sqrt5int(secutanu+(1/cosu)/(sinu/cosu))du#
#=sqrt5int(secutanu+cscu)du## =sqrt5secu+sqrt5ln|tan(u/2)|+c##=sqrt5secu+sqrt5/color(red)2ln|tan^color(red)2(u/2)|+c#
#=sqrt(x^2+5)+sqrt5/2ln|(1-cosu)/(1+cosu)|+c#, From (1) we get
#=sqrt(x^2+5)+sqrt5/2ln|(1-sqrt5/sqrt(x^2+5))/(1-sqrt5/sqrt(x^2+5))|+c#
#=sqrt(x^2+5)+sqrt5/2ln|(sqrt(x^2+5)-sqrt5)/(sqrt(x^2+5)-sqrt5)|+c#