Simplify this expression: #[(−1/2)^2]^3-:2^-3 ·(−1/2)^-4 -: 2^11 =#? Hint: #[(1/a)^n]^m= (1/a)^(n+m)# #a^j xx a^k = a^(j+k)# this true for all power expression so long they have the same base

1 Answer
May 15, 2016

#[(-1/2)^2]^3-:2^(-3)*(-1/2)^-4)-:2^11)=1/2^10#

Explanation:

#[(-1/2)^2]^3-:2^(-3)*(-1/2)^-4)-:2^11#

= #(-1*2^(-1))^(2xx3)-:2^(-3)*(-1*2^(-1))^(-4)-:2^11#

= #(-1)^6*(2^(-1))^(2xx3)-:2^(-3)*(-1)^(-4)*2^4-:2^11#

= #1*2^(-6)-:2^(-3)*1*2^4-:2^11#

= #2^(-6)-:2^(-3)*2^4-:2^11#

= #2^(-6-(-3)+4-11)=2^(-10)=1/2^10#