Solving Applied Problems: Two Equations? problem 1 The St.mark's Community bbq served 250 dinners. A child's plate cost $3.50 and an adult's plate cost $7.00. A total of $1347.50 was collected. How many of each type of plate was served?

The St.mark's Community bbq served 250 dinners. A child's plate cost $3.50 and an adult's plate cost $7.00. A total of $1347.50 was collected. How many of each type of plate was served?

1 Answer
Nov 6, 2015

Yes, you can build two equations here.

c = amount of child's plates
a = amount of adult's plates

What do you know?
1) you know that in total, 250 diners were served.
So, c + a = 250

What else do you know?
2) The costs for each plates and the total cost. This can be expressed as the following equation:
3.5 c + 7 a = 1347.5

Now, to solve the linear equation system, I would solve the first one for c or a - your choice - and plug it in the second.

For example, you can solve the first equation for c:
c = 250 - a

Pluging this in the second equation gives you:
3.5 * ( 250 - a) + 7 a = 1347.5
875 - 3.5 a + 7 a = 1347.5
3.5 a = 472.5
a = 135

This means that there were 135 adult's plates. The only thing left to do is to compute the amount of child's plates:
c = 250 - a = 250 - 135 = 115

Result: 135 adult's plates, 115 child's plates.