The classical definition of the derivative is
#(df(x))/dx=lim_(h->0)[f(x+h)-f(x)]/h#
where #f(x)=cosx# and #f(x+h)=cos(x+h)#
hence we have that
#(df(x))/dx=lim_(h->0)[f(x+h)-f(x)]/h=>
(df(x))/dx=lim_(h->0)[cos(x+h)-cosx]/h=>
(df(x))/dx=lim_(h->0)[[cosx*cosh-sinx*sinh]-cosx]/h=>
(df(x))/dx=lim_(h->0)[(cosx(cosh-1))/h-sinx*sinh/h]=>
(df(x))/dx=lim_(h->0)[(cosx(cosh-1))/h]-lim_(h->0)[sinx*sinh/h]#
But we know that #lim_(h->0)[((cosh-1))/h]=0# and
#lim_(h->0)(sinh/h)=1#
Hence
#(df(x))/dx=lim_(h->0)[(cosx(cosh-1))/h]-lim_(h->0)[sinx*sinh/h]#
#(df(x))/dx=lim_(h->0)(cosx)*lim_(h->0)(cosh-1)/h-lim_(h->0)(sinx)*lim_(h->0)sinh/h#
#(d(f(x)))/dx=cosx*0-sinx*1=>
(d(f(x)))/dx=-sinx#
Finally #(dcosx)/dx=-sinx#