What are the points of inflection of #f(x)= xe^(x^2) - x^2e^x #?

1 Answer
Jun 8, 2017

At #x~=0.8#

Explanation:

Point of inflection occur where #(d^2f)/(dx^2)=0#

As we have #f(x)=xe^(x^2)-x^2e^x#

#(df)/(dx)=e^(x^2)+xe^(x^2)xx2x-2xe^x-x^2e^x#

= #e^(x^2)+2x^2e^(x^2)-2xe^x-x^2e^x#

and #(d^2f)/(dx^2)=2xe^(x^2)+2(2xe^(x^2)+x^2xxe^(x^2)xx2x)-2(e^x+xe^x)-(2xe^x+x^2e^x)#

= #2xe^(x^2)+4xe^(x^2)+4x^3e^(x^2)-2e^x-2xe^x-2xe^x-x^2e^x#

= #6xe^(x^2)+4x^3e^(x^2)-2e^x-4xe^x-x^2e^x#

and #6xe^(x^2)+4x^3e^(x^2)-2e^x-4xe^x-x^2e^x=0#

at #x~=0.8# (from the graph given below) and this is the point of inflection, as may be seen from graph of #f(x)=xe^(x^2)-x^2e^x#

graph{6xe^(x^2)+4x^3e^(x^2)-2e^x-4xe^x-x^2e^x [-0.553, 1.947, -0.545, 0.705]}

graph{xe^(x^2)-x^2e^x [-0.553, 1.947, -0.545, 0.705]}