What is #f(x) = int x^2-2xe^(x)dx# if #f(0)=-2 #?
1 Answer
Apr 13, 2017
Explanation:
Separate the integral.
#f(x) = int x^2dx - int 2xe^xdx#
The first integral is
#f(x) = 1/3x^3 - int 2xe^xdx#
We will use integration by parts for the last integral. We let
#int 2xe^xdx = 2x(e^x) - int 2e^x#
#int2xe^xdx = 2xe^x - 2inte^x#
#int2xe^x = 2xe^x - 2e^x#
#int2xe^x = 2e^x(x - 1)#
We put the integral back together to find
#f(x) = 1/3x^3 - 2e^x(x - 1) + C#
We must now find the value of
#-2 = 1/3(0)^3 - 2e^0(0 - 1) + C#
#-2 = 0 + 2 + C#
#C = -4#
This means that
Hopefully this helps!