What is #(int cos^5x dx)/(intsinx dx) -intcos^5x/sinxdx#?

1 Answer
Feb 3, 2017

#(sinx-2/3sin^3x+1/5sin^5x+C_1)/(-cosx+C_2)+ln(abssinx)-sin^2x+1/4sin^4x+C_3#

Explanation:

Let:

  • #I=intcos^5xdx#
  • #J=intsinxdx#
  • #K=intcos^5x/sinxdx#

Then:

#I=intcos^4x(cosx)dx=int(cos^2x)^2(cosx)dx#

Rewriting with the Pythagorean identity:

#I=int(1-sin^2x)^2(cosx)dx#

Let #u=sinx# so #du=cosxdx#:

#I=int(1-u^2)^2du=int(1-2u^2+u^4)du#

Term by term:

#I=u-2/3u^3+1/5u^5+C_1=sinx-2/3sin^3x+1/5sin^5x+C_1#

Now:

#J=-cosx+C_2#

And:

#K=intcos^5x/sinxdx#

Using the form of #cos^5x# from above:

#K=int((1-sin^2x)^2cosx)/sinxdx#

Again, #u=sinx# so #du=cosxdx#:

#K=int(1-2u^2+u^4)/udu=int(1/u-2u+u^3)du#

Term by term:

#K=ln(absu)-u^2+1/4u^4=ln(abssinx)-sin^2x+1/4sin^4x+C_3#

Then the original expression is:

#I/J-K=(sinx-2/3sin^3x+1/5sin^5x+C_1)/(-cosx+C_2)+ln(abssinx)-sin^2x+1/4sin^4x+C_3#