What is the antiderivative of #Cos(2x)Sin(x)dx#?
2 Answers
# int \ cos(2x)sinx \ dx = 1/2cosx-1/6cos3x+ C #
Explanation:
We use a little trick to express the integrand as the sum of multiple angles and then use the trig multiple angle formula:
# 2 sin A cos B = sin (A +B) + sin (A -B) #
And we get;
# int \ cos(2x)sinx \ dx = 1/2 \ int \ 2sinxcos(2x) \ dx #
# " "= 1/2 \ int \ sin(x+2x) + sin(x-2x) \ dx #
# " "= 1/2 \ int \ sin(3x) + sin(-x) \ dx #
# " "= 1/2 \ int \ sin(3x) - sin(x) \ dx #
We can now easily integrate this:
# int \ cos(2x)sinx \ dx = 1/2 \ (-1/3cos3x+cosx) + C #
# " "= 1/2cosx-1/6cos3x+ C #