What is the axis of symmetry and vertex for the graph # f(x)=x^2+2x-8#?

1 Answer
Mar 7, 2016

Vertex#" "->" "(x,y)" "->" "(-1,-9)#

Axis of symmetry#" " = " "x_("vertex")=-1#

Explanation:

The method I am about to use is the beginning part of completing the square.

Given:#" "f(x)=x^2+color(red)(2)x-8#

Compare to standard form of #ax^2+bx+c#

I can rewrite this as:#" " a(x^2+color(red)(b/a)x)+c#

I then apply: #" "(-1/2)xx color(red)(b/a) = x_("vertex")#

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("To determine "x_("vertex")#

In your case #a=1" and "b=2# so we have

#color(blue)(x_("vertex")=(-1/2)xx color(red)(2/1) =-1)#

Fast, isn't it!
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("Axis of symmetry = "x_("vertex")=-1#

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("To determine "y_("vertex")#

Substitute #color(blue)(x=-1)# in the original equation

#color(brown)(y_("vertex")=color(blue)((-1))^2+2color(blue)((-1))-8#

#color(blue)(y_("vertex")=1-2-8=-9#
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Tony B