What is the axis of symmetry and vertex for the graph #y= -2x^2 + 24x - 10#?
1 Answer
Aug 15, 2017
Explanation:
#"given the equation of a parabola in standard form"#
#•color(white)(x)ax^2+bx+c color(white)(x);a!=0#
#"the x-coordinate of the vertex and the axis of symmetry is"#
#x_(color(red)"vertex")=-b/(2a)#
#y=-2x^2+24x-10" is in standard form"#
#"with "a=-2,b=24,c=-10#
#rArrx_(color(red)"vertex")=-24/(-4)=6#
#"substitute this value into the equation for the"#
#"corresponding y-coordinate"#
#rArry_(color(red)"vertex")=-72+144-10=62#
#rArrcolor(magenta)"vertex "=(6,62)#
#"equation of axis of symmetry is "x=6#
graph{(y+2x^2-24x+10)(y-1000x+6000)=0 [-160, 160, -80, 80]}