What is the axis of symmetry and vertex for the graph #y= -2x^2 + 24x - 10#?

1 Answer
Aug 15, 2017

#x=6,(6,62)#

Explanation:

#"given the equation of a parabola in standard form"#

#•color(white)(x)ax^2+bx+c color(white)(x);a!=0#

#"the x-coordinate of the vertex and the axis of symmetry is"#

#x_(color(red)"vertex")=-b/(2a)#

#y=-2x^2+24x-10" is in standard form"#

#"with "a=-2,b=24,c=-10#

#rArrx_(color(red)"vertex")=-24/(-4)=6#

#"substitute this value into the equation for the"#
#"corresponding y-coordinate"#

#rArry_(color(red)"vertex")=-72+144-10=62#

#rArrcolor(magenta)"vertex "=(6,62)#

#"equation of axis of symmetry is "x=6#
graph{(y+2x^2-24x+10)(y-1000x+6000)=0 [-160, 160, -80, 80]}