What is the axis of symmetry and vertex for the graph #y=4x^2+5x-1#?

1 Answer
Jul 5, 2017

#x_("vertex")=" axis of symmetry"=-5/8#

Vertex#->(x,y)=(-5/8,-41/16)#

Explanation:

The coefficient of #x^2# is positive so the graph is of form #uu#. Thus the vertex is a minimum.

#y=4x^2+5x-1" "...........................Equation(1)#

#color(green)(ul("Part"))# of the process of completing the square gives you:

#y=4(x^2+5/4x)-1" "....................Equation(2)#

#x_("vertex")=(-1/2)xx(+5/4)=-5/8#

Substitute for #x" in "Equation(1)# giving:

#y_("vertex")=4(-5/8)^2+5(-5/8)-1#

#y_("vertex")=-2 9/16 ->-41/16#

Vertex#->(x,y)=(-5/8,-41/16)#