What is the Cartesian form of #(36,(-pi)/16))#?

1 Answer
Sep 22, 2017

#(x, y) = (rcostheta, rsintheta)#

#= (18sqrt(2+sqrt(2+sqrt(2))), -18sqrt(2-sqrt(2+sqrt(2))))#

Explanation:

To convert from polar to rectangular coordinates use:

#{ (x = rcos theta), (y = rsin theta) :}#

First let's find algebraic expressions for #sin(pi/16)# and #cos(pi/16)#

Use:

#sin(pi/4) = cos(pi/4) = sqrt(2)/2#

#sin^2 theta + cos^2 theta = 1#

#cos(2theta) = cos^2 theta - sin^2 theta = 2cos^2 theta - 1 = 1 - 2sin^2 theta#

#sin(-theta) = -sin(theta)#

#cos(-theta) = cos(theta)#

From #cos2theta = 2cos^2 theta - 1# we can deduce:

#cos theta = +-sqrt((cos 2theta + 1)/2) = +-1/2sqrt(2+2cos2theta)#

From #cos2theta = 1 - 2sin^2 theta# we can deduce:

#sin theta = +-sqrt((1-cos 2theta)/2) = +-1/2sqrt(2-2cos2theta)#

Since #pi/8# and #pi/16# are both in Q1, we know that #sin# and #cos# are both positive, so we can use the positive square root each time to find:

#sin (pi/16) = 1/2sqrt(2-2cos(pi/8))#

#color(white)(sin (pi/16)) = 1/2sqrt(2-sqrt(2+2cos(pi/4)))#

#color(white)(sin (pi/16)) = 1/2sqrt(2-sqrt(2+sqrt(2)))#

#cos (pi/16) = 1/2sqrt(2+2cos(pi/8))#

#color(white)(cos(pi/16)) = 1/2sqrt(2+sqrt(2+sqrt(2)))#

So:

#sin(-pi/16) = -sin(pi/16) = -1/2sqrt(2-sqrt(2+sqrt(2)))#

#cos(-pi/16) = cos(pi/16) = 1/2sqrt(2+sqrt(2+sqrt(2)))#

So with #r=36# and #theta = -pi/16# we find:

#(x, y) = (rcostheta, rsintheta)#

#color(white)((x, y)) = (36(1/2sqrt(2+sqrt(2+sqrt(2)))), 36(-1/2sqrt(2-sqrt(2+sqrt(2)))))#

#color(white)((x, y)) = (18sqrt(2+sqrt(2+sqrt(2))), -18sqrt(2-sqrt(2+sqrt(2))))#