What is the Cartesian form of #( 6 , ( 9pi)/4 ) #?
1 Answer
Oct 18, 2016
Explanation:
To convert from
#color(blue)"polar to cartesian form"# That is
#(r,theta)to(x,y)#
#color(orange)"Reminder " color(red)(bar(ul(|color(white)(2/2)color(black)(x=rcostheta , y=rsintheta)color(white)(2/2)|)))# here r = 6 and
#theta=(9pi)/4#
#rArrx=6cos((9pi)/4)=6cos((9pi)/4-2pi)#
#=6cos(pi/4)=6xx1/sqrt2=(6sqrt2)/2=3sqrt2# and
#y=6sin((9pi)/4)=6sin((9pi)/4-2pi)#
#=6sin(pi/4)=6xx1/sqrt2=3sqrt2#
#rArr(6,(9pi)/4)to(3sqrt2,3sqrt2)#