What is the distance between #(1, 4)# and #(–3, –2)#?

2 Answers
Mar 11, 2018

Answer:

7.21

Explanation:

The formula for distance is simply pythagoras written in different terms.
#d = sqrt((x_2-x_1)^2 + (y_2-y_1)^2#
Substituting and solving we get:
#d = sqrt((1+3)^2 + (4+2)^2#
#d = sqrt(4^2 + 6^2)#
#d = sqrt(16 + 36)#
#d = sqrt(52)#
#d = 7.21#

Mar 11, 2018

Answer:

Distance #= sqrt52 approx 7.2#units

Explanation:

Distance between two points

#= sqrt((x_1-x_2)^2-(y_1-y_2)^2#

Here , #x_1=1#

#x_2=-3#

#y_1=4#

#y_2=-2#

Put these values on the distance formula

#d=> sqrt((1-(-3))^2+(4-(-2)^2#

#d=> sqrt((1+3)^2+(4+2)^2#

#d=> sqrt((4)^2 + (6)^2#

#d=> sqrt(16+36)#

#d=> sqrt52 approx 7.2 " units"#