What is the distance between #(-1,7)# and #(44,3)#?

2 Answers
Mar 29, 2018

See a solution process below:

Explanation:

The formula for calculating the distance between two points is:

#d = sqrt((color(red)(x_2) - color(blue)(x_1))^2 + (color(red)(y_2) - color(blue)(y_1))^2)#

Substituting the values from the points in the problem gives:

#d = sqrt((color(red)(44) - color(blue)(-1))^2 + (color(red)(3) - color(blue)(7))^2)#

#d = sqrt((color(red)(44) + color(blue)(1))^2 + (color(red)(3) - color(blue)(7))^2)#

#d = sqrt(45^2 + (-4)^2)#

#d = sqrt(2025 + 16)#

#d = sqrt(2041)#

Or

#d ~= 45.177#

Mar 29, 2018

#~~45.18" to 2 dec. places"#

Explanation:

#"calculate the distance using the "color(blue)"distance formula"#

#•color(white)(x)d=sqrt((x_2-x_1)^2+(y_2-y_1)^2)#

#"let "(x_1,y_1)=(-1,7)" and "(x_2,y_2)=(44,3)#

#rArrd=sqrt((44+1)^2+(3-7)^2)#

#color(white)(rArrd)=sqrt(2041)~~45.18#