What is the distance between #(10, 8)# and #(-10, 6) #?

1 Answer
Jan 21, 2016

#2sqrt(101#

Explanation:

The distance formula for Cartesian coordinates is

#d=sqrt((x_2-x_1)^2+(y_2-y_1)^2#
Where #x_1, y_1#, and#x_2, y_2# are the Cartesian coordinates of two points respectively.
Let #(x_1,y_1)# represent #(10,8)# and #(x_2,y_2)# represent #(-10.6)#.
#implies d=sqrt((-10-10)^2+(6-8)^2#
#implies d=sqrt((-20)^2+(-2)^2#
#implies d=sqrt(400+4#
#implies d=2sqrt(100+1#
#implies d=2sqrt(101#

Hence the distance between the given points is #2sqrt(101)# units.