What is the distance between #(-12,4)# and #(8,3)#?

1 Answer
Dec 29, 2015

Answer:

#sqrt(401)#

Explanation:

The distance formula for Cartesian coordinates is

#d=sqrt((x_2-x_1)^2+(y_2-y_1)^2#
Where #x_1, y_1#, and#x_2, y_2# are the Cartesian coordinates of two points respectively.
Let #(x_1,y_1)# represent #(-12,4)# and #(x_2,y_2)# represent #(8,3)#.
#implies d=sqrt((8-(-12))^2+(3-4)^2#
#implies d=sqrt((8+12)^2+(-1)^2#
#implies d=sqrt((20)^2+(-1)^2#
#implies d=sqrt(400+1)#
#implies d=sqrt(401)#

#implies d=sqrt(401)#

Hence the distance between the given points is #sqrt(401)#.