What is the distance between # (-2, 4) # and #(8, 8)#?

2 Answers

#2\sqrt{29}=10.77\ text{unit#

Explanation:

The distance between the points #(x_1, y_1)\equiv(-2, 4)# & #(x_2, y_2)\equiv(8, 8)# is given by using distance formula as follows

#\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}#

#=\sqrt{(-2-8)^2+(4-8)^2}#

#=2\sqrt{29}#

#=10.77\ text{unit#

Jul 24, 2018

#sqrt116~~10.77" to 2 dec. places"#

Explanation:

#"Calculate the distance d using the "color(blue)"distance formula"#

#•color(white)(x)d=sqrt((x_2-x_1)^2+(y_2-y_1)^2)#

#"let "(x_1,y_1)=(-2,4)" and "(x_2,y_2)=(8,8)#

#d=sqrt((8-(-2))^2+(8-4)^2)#

#color(white)(d)=sqrt(100+16)=sqrt116~~10.77#