What is the distance between #(2 ,(5 pi)/6 )# and #(4 , (23 pi )/12 )#? Trigonometry The Polar System Polar Coordinates 1 Answer A. S. Adikesavan Sep 6, 2016 #sqrt(5+sqrt 2(sqrt 3 +1))# Explanation: If O is the pole, A is #(2, 5/6pi)# and B is #(4, 33/12pi)#, then AB is #sqrt(OA^2+OB^2-2XOAXOBXcosangleAOB)# #=sqrt(2^2+4^2-(2)(2)(4)cos(23/12pi-5/6pi)# #=sqrt(20-16 cos(13/12pi))# #=2sqrt (5-4coss(pi+pi/12)# #=2 sqrt(5+4cos 15^o)# Here, #cos 15^o=cos(45^o-30^o)# #=cos 45^o cos 30^o + sin 45^o sin 30^o# #=(sqrt 3+1)/(2sqrt 2)#. So, #AB = sqrt(5+4((sqrt3+1)/(2sqrt2))# #=sqrt(5+sqrt 2(sqrt 3 +1))# Answer link Related questions What are Polar Coordinates? How do you find the polar coordinates of the point? What is the difference between a rectangular coordinate system and a polar coordinate system? How do you graph polar coordinates? What careers use polar coordinates? How do you plot the point #A (5, -255^\circ)# and the point #B (3, 60^\circ)#? What does a polar coordinate system look like? How do you find the distance between 2 polar coordinates? For the given point #A(-4, frac{pi}{4})#, how do you list three different pairs of polar... How do you find the rectangular form of #(4, -pi/2)#? See all questions in Polar Coordinates Impact of this question 1491 views around the world You can reuse this answer Creative Commons License