What is the distance between #(9, 2, 0)# and #(0, 6, 0) #?
2 Answers
Aug 29, 2016
Explanation:
Use the
#color(blue)"3-d version of the distance formula"#
#color(red)(|bar(ul(color(white)(a/a)color(black)(d=sqrt((x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2))color(white)(a/a)|)))#
where# (x_1,y_1,z_1)" and " (x_2,y_2,z_2)" are 2 coordinate points"# here the 2 points are (9 ,2 ,0) and (0 ,6 ,0)
let
# (x_1,y_1,z_1)=(9,2,0)" and " (x_2,y_2,z_2)=(0,6,0)#
#d=sqrt((0-9)^2+(6-2)^2+0^2)=sqrt(81+16)=sqrt97≈9.849#
Aug 29, 2016
Explanation:
The (Euclidean) distance between
#d = sqrt((x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2#
In our example,
#d = sqrt((0-9)^2+(6-2)^2+(0-0)^2) = sqrt(81+16+0) = sqrt(97)#