What is the distance between the following polar coordinates?: # (5,(3pi)/4), (1,(9pi)/8) #

1 Answer
Dec 22, 2017

Distance between the polar coordinates is #4.71#

Explanation:

The polar coordinates #(5,(3pi)/4)# and #(1,(9pi)/8)#

in rectangular coordinates are

#(5cos((3p)/4),5sin((3p)/4)# i.e. #(-5/sqrt2,5/sqrt2)# or #(-3.5355,3.5355)#

and #(cos((9p)/8),sin((9p)/8))# i.e. #(-0.9239,-0.3827)#

Hence distance between two is

#sqrt((-3.5355+0.9239)^2+(3.5355+0.3827)^2)#

= #sqrt(2.6116^2+3.9182^2)#

= #sqrt(6.82045456+15.35229124)#

= #sqrt22.1727458#

= #4.71#