The focus is #F=(-2,6)# and the vertex is #V=(-2,9)#
Therefore, the directrix is #y=12# as the vertex is the midpoint from the focus and the directrix
#(y+6)/2=9#
#=>#, #y+6=18#
#=>#, #y=12#
Any point #(x,y)# on the parabola is equidistant from the focus and the directrix
#y-12=sqrt((x+2)^2+(y-6)^2)#
#(y-12)^2=(x+2)^2+(y-6)^2#
#y^2-24y+144=(x+2)^2+y^2-12y+36#
#12y=-(x+2)^2+108#
#y=-1/12(x+2)^2+9#
graph{(y+1/12(x+2)^2-9)(y-12)=0 [-32.47, 32.45, -16.23, 16.25]}
The second case is
The focus is #F=(-2,9)# and the vertex is #V=(-2,6)#
Therefore, the directrix is #y=3# as the vertex is the midpoint from the focus and the directrix
#(y+9)/2=6#
#=>#, #y+9=12#
#=>#, #y=3#
#y-3=sqrt((x+2)^2+(y-9)^2)#
#(y-3)^2=(x+2)^2+(y-9)^2#
#y^2-6y+9=(x+2)^2+y^2-18y+81#
#12y=(x+2)^2+72#
#y=1/12(x+2)^2+6#
graph{(y-1/12(x+2)^2-6)(y-3)=0 [-32.47, 32.45, -16.23, 16.25]}