What is the equation of the tangent line of #r=-2sin(6theta-(4pi)/3) # at #theta=(2pi)/3#?

1 Answer
Aug 15, 2017

#y = -4(x-sqrt3/2)-1.5#

Explanation:

The reference Tangents with Polar Coordinates gives us the equation:

#dy/dx = ((dr)/(d theta)sin(theta)+rcos(theta))/((dr)/(d theta)cos(theta)-rsin(theta))" [1]"#

Compute #(dr)/(d theta)#

#(dr)/(d theta) = -12cos(6theta-(4pi)/3)#

#(dr)/(d theta) = 12sin(6theta+pi/6)#

Substitute right sides of the equation for r and #(dr)/(d theta)# into equation [1]:

#dy/dx = ((12sin(6theta+pi/6))sin(theta)+(-2sin(6theta-(4pi)/3))cos(theta))/((12sin(6theta+pi/6))cos(theta)-(-2sin(6theta-(4pi)/3))sin(theta))#

The slope, m, of the tangent line is the above equation evaluated at #theta=(2pi)/3#

#m = ((12sin(6(2pi)/3+pi/6))sin((2pi)/3)+(-2sin(6(2pi)/3-(4pi)/3))cos((2pi)/3))/((12sin(6(2pi)/3+pi/6))cos((2pi)/3)-(-2sin(6(2pi)/3-(4pi)/3))sin((2pi)/3))#

#m~~-4#

The x coordinate, #x_1#, of the point of tangency is:

#x_1 = -2sin(6(2pi)/3-(4pi)/3)cos((2pi)/3)#

#x_1 = sqrt3/2#

The y coordinate, #y_1#, of the point of tangency is:

#y_1 = -2sin(6(2pi)/3-(4pi)/3)sin((2pi)/3)#

#y_1 = -1.5#

Using the point-slope form of the equation of a line:

#y = m(x-x_1)+y_1#

We obtain the following equation:

#y = -4(x-sqrt3/2)-1.5#

Here is a graph of the function, the point of tangency, and the tangent line:

www.desmos.com/calculator