What is the equation of the tangent line to the polar curve # f(theta)=theta^2cos(3theta)-thetasin(2theta)+tan(theta/6) # at #theta = pi#?

1 Answer
Jun 14, 2016

#Y = ((pi^2-1/sqrt[3]) (1/sqrt[3] - pi^2 + X))/( 4 pi-2/9)#

Explanation:

The pass equations are

#{ (x(theta) = r(theta)cos(theta)), (y(theta)=r(theta)sin(theta)) :}#

The tangent space is obtained making

#(dy)/(dx) = ((dy)/(d theta))((d theta)/(dx))#

but

#(dx)/(d theta) = (dr)/(d theta) cos(theta) - r(theta)sin(theta)#
#(dy)/(d theta) = (dr)/(d theta) sin(theta) + r(theta)cos(theta)#

with

#r(theta) = theta^2 Cos(3 theta) - theta Sin(2 theta) + Tan(theta/6)#

Deriving and calculating for #theta = pi# we obtain

#((dy)/(dx))_{theta=pi} = ( pi^2-1/(sqrt[3]) )/( 4 pi-2/9 )#

#x_0 = x(pi) = -(1/sqrt[3]) + pi^2#
#y_0 = y(pi) = 0#

so the tangent line at #p_0 = {x_0,y_0}# is

#Y = ((pi^2-1/sqrt[3]) (1/sqrt[3] - pi^2 + X))/( 4 pi-2/9)#

enter image source here