What is the instantaneous rate of change of #f(x)=sqrt(x^2+4x+2) # at #x=0 #?

1 Answer
May 17, 2016

#sqrt2#

Explanation:

The instantaneous rate of change is the value of f'(0).

#f(x)=sqrt(x^2+4x+2)=(x^2+4x+2)^(1/2)#

differentiate using the#color(blue)" chain rule"#

#d/dx[f(g(x))]=f'(g(x)).g'(x)"......(A)"#
#"-------------------------------------------------------"#

#f(g(x))=(x^2+4x+2)^(1/2)#

#rArrf'(g(x))=1/2(x^2+4x+2)^(-1/2)#

and #g(x)=x^2+4x+2rArrg'(x)=2x+4#
#"-----------------------------------------------------------"#
Substitute these values into (A)

#rArrf'(x)=1/2(x^2+4x+2)^(-1/2) .(2x+4)#

#=1/2xx1/(x^2+4x+2)^(1/2)xx(2x+4)#

#rArrf'(0)=1/2xx1/sqrt2xx4=2/sqrt2=(2sqrt2)/2=sqrt2#